Balanced Fertilization For sustainable yield and quality in tropical fruit

Department of Fruit Crops Horticultural College & Research Institute, Tamil Nadu Agricultural University, Coimbatore- 641 003, India

Status Of Fruit Crops In India

- * Area 3.8 million ha (m.ha)
- **Production about 45.5 million tones**
- *** 10% of world fruit production**
- **Meets only 46% of the need of the country**
- **Between the set of th**
- ***** The production expected 88 mt.
- Wide gap between demand and supply
- **Warrants increase in production and productivity**

Mineral nutrients

- Major contributor to enhancing crop production
- Enhanced use of fertilizers- adverse effects on the environment
- Nutrient use efficiency
 - Improved soil management to increase the productivity of any crop
 - **Balanced fertilization**

Nutrient requirements of fruit crops

Fruit crops yield high & mine heavily the

nutrients from the soils

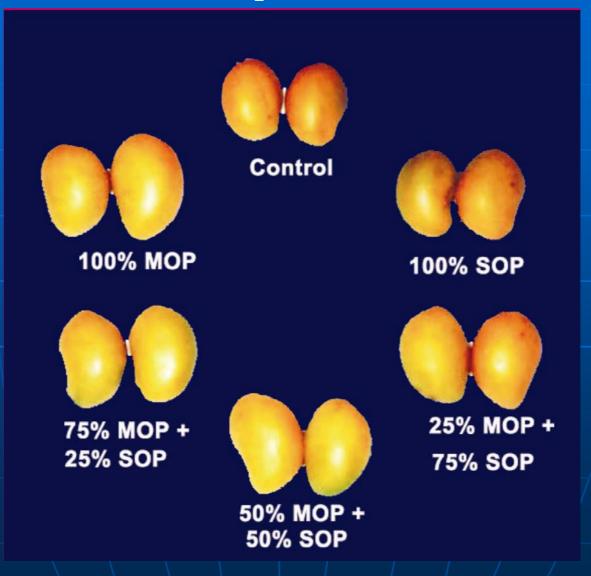
- Estimate of the nutrient requirement :
 - Nutrient reserves in the trees
- Soil nutrient status
- Fertilizer recommendation requires leaf analysis
 - Crop residues

Needs regular fertilization for maintaining proper growth and heavy yield of crop every year. Not at all manured or even if it is manured, it is unbalanced. 82 to 88.5% of the active roots - 300 cm Highest activity of roots at 120 cm from the trunk, Nutritional requirements depends- the type and nutrient status of the soil, age of the tree etc.

TNAU Recommendation

Stage	FYM	N	$P_2 O_5$	K ₂ O
	(Kg/ tree)		Kg /tree	
Pre bearing	10	0.2	0.2	0.3
Annual Increase	10	0.2	0.2	0.3
Bearing	50	1.0	1.0	1.5

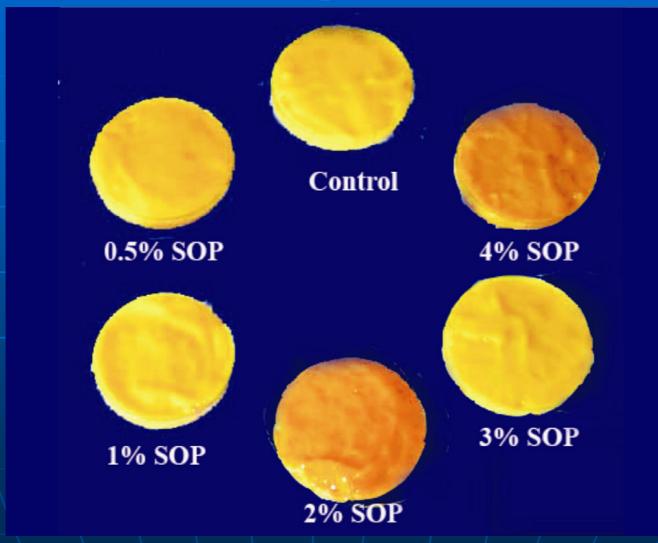
Studies on the efficacy of Sulphate of Potash (SOP) on yield and quality of mango under tropical belt of India.


 To assess the effect of Sulphate of Potash (SOP) on yield and quality of mango.

To integrate SOP as a source of potassium nutrition for mango.

Effect of SOP soil application on Mango

K dose	Fruit No/ plant	Yield / plant	T.S.S	Carotenoid (mg/100g)
0 % K	33.9	8.2	17.2	5.87
100 % as MOP	40.8	13.2	17.8	6.39
50 % as MOP: SOP	58.9	14.0	16.6	13.05


Effect of soil application of SOP on fruit size in mango cv. Alphonso

Effect of spraying of SOP on yield and quality traits of mango cv. Alphonso

Effect of foliar spray of SOP on pulp colour in mango cv. Alphonso

Effect of fertigation on yield characters in mango cv.Ratna

Treatments	Number of fruits tree ⁻¹	Mean fruit weight (g)	Fruit yield (kg tree ⁻¹)
100% of RDF as soil application	116.5	364.6	40.8
100% N + 100 % P + 50 % K of RDF	126.7	340.8	40.2
through fertigation100% N + 100 % P + 75 % K of RDF	142.7	436.3	54.0
through fertigation			
100% N + 100 % P + 100 % K of RDF through fertigation	160.0	465.3	59.8
CD(0.05)	6.14	12.50	1.43

RDF: (800:400:800 g NPK plant ⁻¹ year⁻¹)

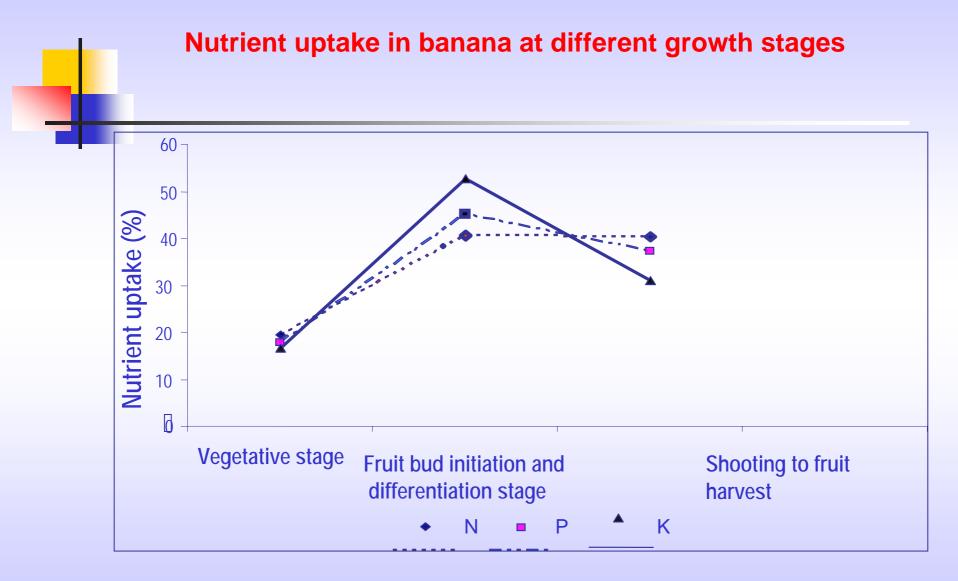
Effect of fertigation on mango flowering

T₁ - 100% RDF as soil application

T₂ - 100% RDF through fertigation

Effect of fertigation on fruit size in mango

100% RDF (Soil application)


100% RDF (Fertigation)

50% RDF (Fertigation)

Average amount of nutrient removed (kg/ha) in banana and plantains (yield : 50 t/ha)

Nutrient	Nutrient removed (kg/ha) by the entire plant	Proportion of fruits (%)	Nutrient available from crop residues (Kg/ ha)
Ν	388	49	198
Р	52	56	23
K	1438	54	661
Ca	227	45	125
Mg	125	39	76
S	73	32	50
Mn	12.5	4	12
Fe	5.9	15	5
Zn	4.7	12	4
В	1.27	55	0.6
Cu	0.37	54	0.2



Fertilizer recommendations for banana (g plant-⁻¹) in various states

States	Ν	Р	K
West Bengal	240	45	240
Kerala	225	225	225
Tamil Nadu	110	35	330
Goa	75	75	240
Assam	110	35	330
Bihar	125	80	225
Orissa	80	32	90
Uttar Pradesh	200	100	250


FERTIGATION IN BANANA

- *** Need based scheduling**
- *** 50% saving in fertilizers**
- ***** Efficient nutrient uptake
 - \star 30 60% increased yield
- Reduced labour input

Fertigation system -Dosatron

Scheduling of NPK at various stages of banana

Fertigation studies in banana under normal and high density planting system

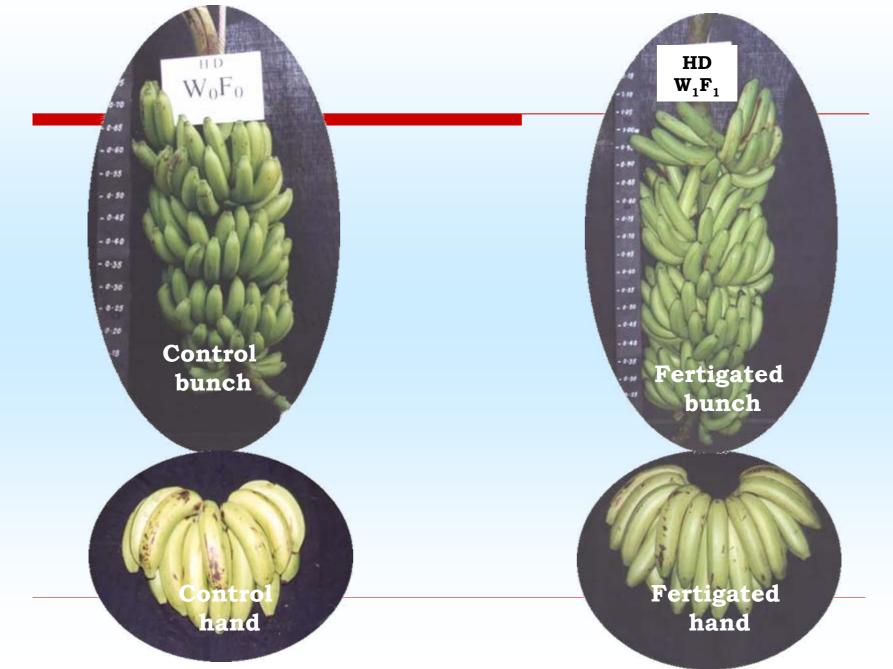
	Bunch weight (Kg)		
Treatments	HDP	NP	
T1 – 100% of RDF through fertigation	34.14	38.52	
T2 –75% of RDF through fertigation	31.63	34.93	
T3 – 50% of RDF through fertigation	26.85	32.40	
T4 – Conventional	20.48	23.59	
CD (0.05)	0.67	1.69	

RDF - (110:330 g N and K g/plant)

Mahalakshmi et al., 2001

High density planting- 3 suckers/pit

Bunch characters under NP system through fertigation

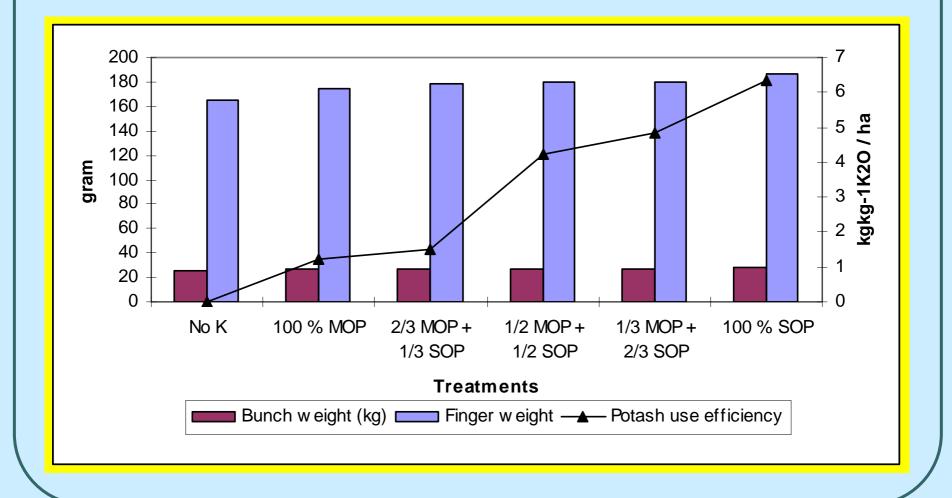


Bunch characters under HDP system through fertigation

Effect of sources of fertilizers for fertigation in banana cv. Robusta

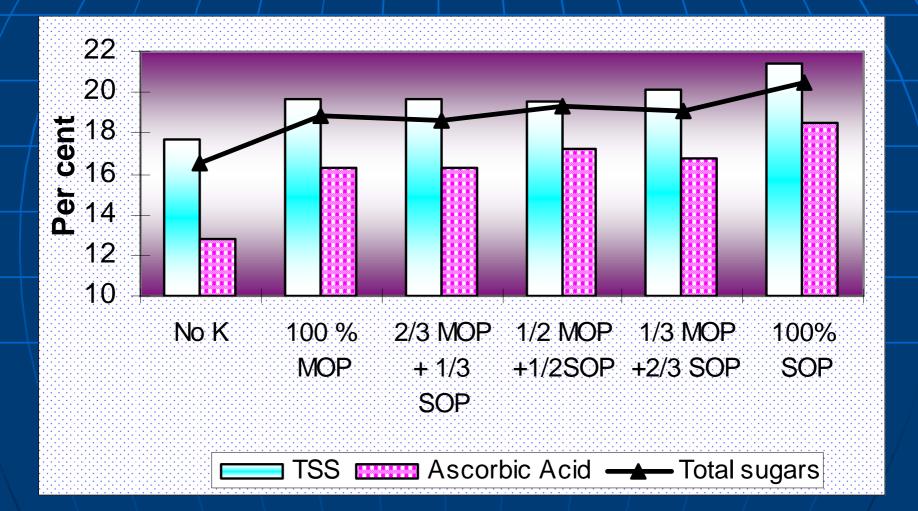
Treatments		Bunch Wt (kg)	Yield (MT/ha)	Leaf Nutrient status (%)			B/C	
Treatine	iits	Wt.(kg)	(I VI I/IIA)	N P		K	ratio	
Water soluble	100% of RDF	25.51	127.5	3.03	0.36	2.32	1.21	
fertilizers	75 % RDF	19.33	96.7	2.92	0.34	2.22	0.98	
Conventional	100% of RDF	22.87	114.2	2.81	0.32	2.11	3.32	
fertilizers	75 % RDF	17.84	89.20	2.74	0.31	1.99	2.65	
	CD	0.17	-	0.024	NS	NS	-	

RDF - (110:330 g N and K g/plant)

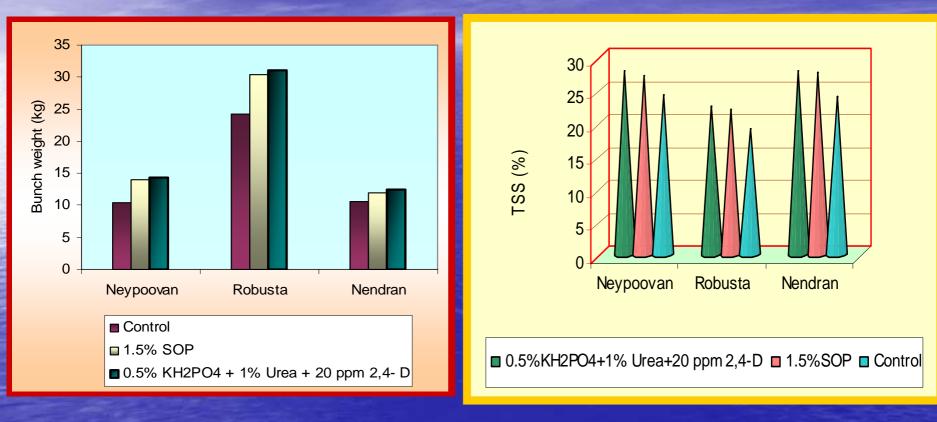

Kavino et al. (2004)

Effect of fertigation level in banana cv. Red banana

Treatments	Bunch Weight (Kg)	ght number		Leaf Nutrient Status (%) at shooting stage		
			Ν	Р	K	
T1 – 100% RDF (110:330 g N and K g/plant)	18.19	535.23	2.90	0.32	2.38	
T2 – 75 % RDF	16.05	519.85	2.82	0.30	2.30	
T3 – 50% RDF	14.02	507.54	2.73	0.29	2.20	
CD (P = 0.05)	0.65	0.94	0.031	NS	NS	


Suganthi, 2002

Influence of sources of potassium (SOP vs MOP) on bunch and finger weight in banana


Ramesh Kumar, 2004

Influence of sources of potassium (SOP vs MOP) on quality traits in banana

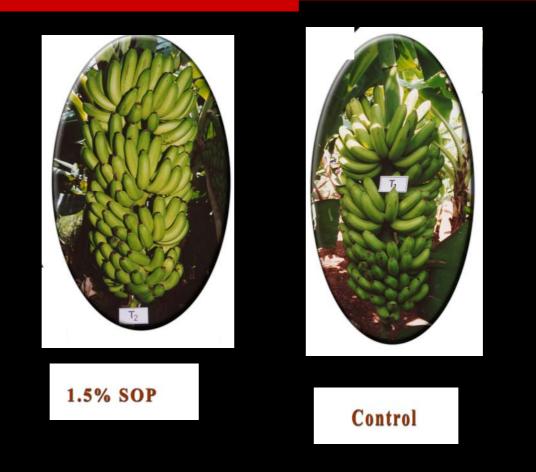
Ramesh Kumar, 2004

Effect of post shooting spray of certain nutrients on bunch weight & quality in banana cultivars

Ramesh Kumar (2004)

Bunches from post shooting spray of SOP cv. Rasthali (AAB)

Bunches from post shooting spray of certain nutrients cv. Ney poovan (AB)



1.5% SOP

Bunches from post shooting spray of certain nutrients cv. Robusta (AAA)

STANDARDISATION OF FERTILIZER REQUIREMENT FOR TISSUE CULTURED BANANA CV. ROBUSTA

FERTILIZER RECOMMENDATION FOR TISSUE CULTURED BANANA CV. ROBUSTA (AAA)

MERITS OF TISSUE CULTURED BANANA

- Uniformity
- Higher vigour
- High yielding

FERTILIZER RECOMMENDATION

- ▲ 165 : 52.5 : 495 g N: P₂O₅ : K₂O / plant / year
- Apply 2, 4, 6 & 8 months after planting

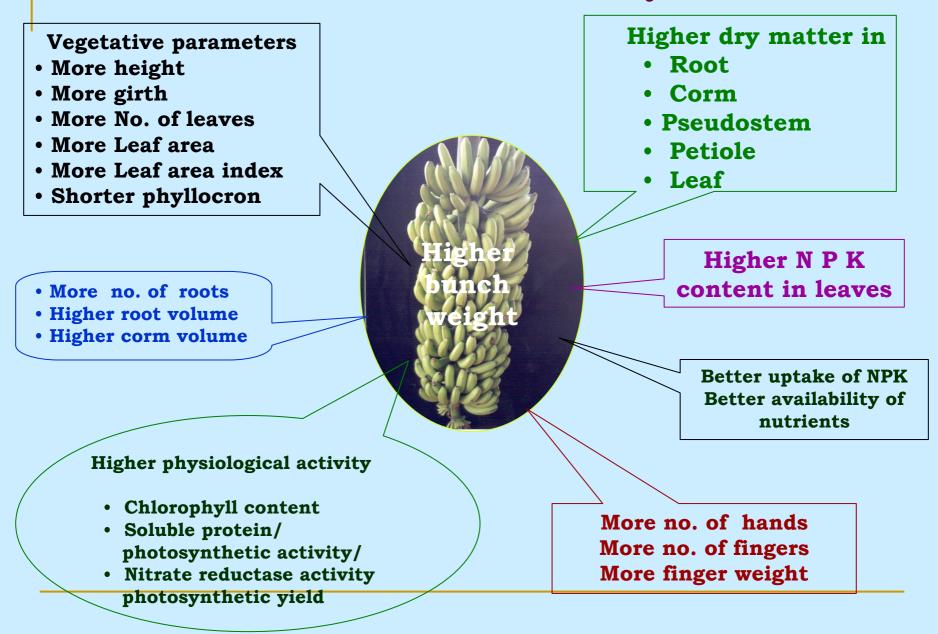
Effect of nutrient levels and split application on TC banana cv. Robusta

			Bunch weight (kg)			
(N:I	Treatment P ₂ O ₅ :K ₂ O g/plant)	No. of splits	Plant1st ratooncropcrop		2 nd ratoon crop	
T1	110:35:330	3	26.87	30.00	17.50	
T2	110:35:495	4	30.03	32.60	20.77	
T3	165:52.5:495	3	33.54	35.42	23.33	
T4	165:52.5:495	4	35.18	37.00	25.28	
T5	220:70:660	3	23.13	27.00	14.12	
T6	220:70:660	4	20.51	30.40	16.11	
	CD		1.09	1.22	1.55	

Nalina *et al.*, 2002

BUNCHES FROM DIFFERENT TREATMENTS OF PLANT CROP

3 splits


BUNCHES FROM DIFFERENT TREATMENTS OF RATOON CROP (R)

3 splits

Factors contributed for the maximum yield in TC Plants

CITRUS

Citrus

- * The importance of nutrients for citrus has been well established in India.
- Improper and inadequate nutrition is one of the major causes of citrus decline in India.
- Studies on the decline of mandarins in Kerala showed that poor nutrient status of soil and neglect and lack of manuring are the main causal factors.

30 MT of citrus fruits remove 270 kg N, 60 kg P2O5, 350 kg K2O, 40 kg MgO and 15 kg S from the soil.

(Tandon and Kemmler, 1986)

So Different states recommend different amounts of NPK for mandarin and other important citrus species in India.

Solit varies from 300-400 g of N, 200 to 375 g of P_2O_5 and 100 to 600 g of K₂O per plant per year.

So Recently, integrated nutrient management (INM) is being advocated in citrus.

Effect of different coating treatments on the efficiency of urea fertilizer on fruit yield and leaf nutrient status in Nagpur mandarin budded on Rangpur lime

	Levels of nitrogen (g / plant / year)					
Coating Treatments	Fruit	yield (K	g/plant)	Leaf Nitrogen content(%)		
Coaung Treatments	300	450	600	300	450	600
Uncoated urea	11.99	13.54	31.66	1.92	2.12	2.20
Coaltar coated urea	13.34	17.66	31.44	2.10	2.20	2.32
Sulphur coated urea	21.54	30.45	21.95	2.20	2.40	2.32
FYM coated urea	20.08	10.77	16.27	2.10	2.15	2.28
Gypsum coated urea	31.98	34.15	28.36	2.26	2.61	2.62
Neem cake coated	9.00	35.34	22.25	2.08	2.16	2.24
urea						
CD (P=0.05)	NS	NS	NS	NS	NS	NS

Source : NRC, Citrus

Effect of organic and inorganic nutrition on yield and quality of Khasi mandarin

Treatments	No of fruits / plant	Yield (kg / plant)	Juice (%)	Ascorbic acid (mg / 100g)	TSS (°Brix)
T ₁ (600:300:600g NPK /plant)	805	118.01	46.33	48.27	14.35
T ₂ (600:300:600g NPK / plant + Neem cake @7.5 kg/plant)	1072	203.55	55.66	57.26	15.26
T3 (Neem cake @7.5 kg/plant + 75 % T ₁)	912	169.82	53.85	54.35	14.95
T4 (Neem cake @7.5 kg/plant + 50 % T ₁)	895	161.40	54.95	52.12	14.45
CD (0.05)	19.66	10.45	1.05	3.50	0.21

(Source : AICRP Tropical Fruits, Biennial Report, 2006)

Effect of bioinoculants in combination with organic manure and inorganic fertilizers on yield and fruit quality of mandarin orange (TNAU)

Treatments	Fruit weight (g)	Number of fruits per tree	Yield per tree (kg)	TSS (⁰ Brix)	Ascorb ic acid (mg/100 g)
Recommended dose of fertilizers (RDF) (600:200:400 g NPK plant ⁻¹)	91.50	100.97	9.00	8.89	21.80
100 per cent RDF + Bioinoculants*	84.50	147.95	12.90	9.44	23.13
75 per cent RDF + Bioinoculants *	86.00	140.95	12.00	9.51	22.47
CD (0.05)	01.75	8.06	00.08	0.26	00.62

* Arbuscular mycorrhiza (500 g plant-1) +Azospirillum lipoferum (100 g plant-1) + Phosphate solubilizing bacteria (100 g plant-1) + Pseudomonas fluorescens (100 g plant-1).

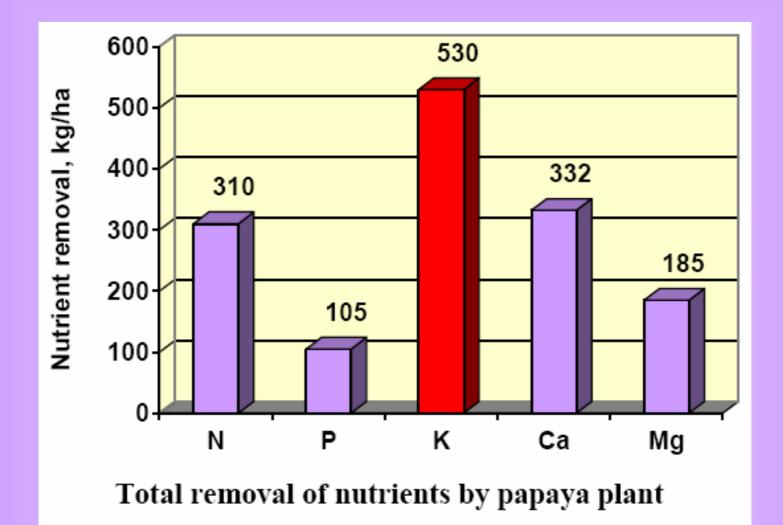
Effect of organic and inorganic fertilizers on yield of sweet orange

Treatments	Fruit number / plant	Yield / plant (kg)	Weight of fruit (g)	Juice (%)	TSS (°Brix)
T ₁ (Inorganic fertilizers @ 800:300:600g NPK / plant / year)	1960	296.27	160.76	42.04	12.86
T ₂ (Castor cake @ 7.5 kg/plant/year)	2210	353.39	167.74	41.58	13.23
T3 (Castor cake @ 7.5 kg/plant/year + 75 % of T ₁)	1801	321.82	170.40	41.25	12.85
T4 (Castor cake @ 7.5 kg / plant / year + 50 % of T_1)	2539	399.87	170.71	41.68	13.28
F Value	NS	NS	-	-	-

(Source : AICRP Tropical Fruits, Biennial Report, 2006)

Effect of organic and inorganic nutrients on yield and quality of acid lime fruits						
Treatment	Number of fruits / plant	Weight of fruits/ plant (kg)	Average weight of fruit (g)	Juice (%)	TSS (%)	Cost / Benefit ratio
T ₁ (600:300:300 g N, P ₂ O ₅ and K ₂ O)	857	27.31	31.10	52.22	7.18	1: 9.70
T ₂ Neem cake 7.5 kg alone	722	21.26	28.75	52.82	7.15	1: 7.92
T ₃ (Neem cake 7.5 kg + 50 % T ₁)	822	26.21	31.51	50.55	7.85	1: 8.90
T ₄ (Neem cake 7.5 kg + 75 % T ₁)	909	28.80	31.51	50.53	7.90	1: 8.75
CD (0.05)	73.04	2.043	2.09	0.396	0.138	-

(Source : AICRP Tropical Fruits, Biennial Report, 2006)

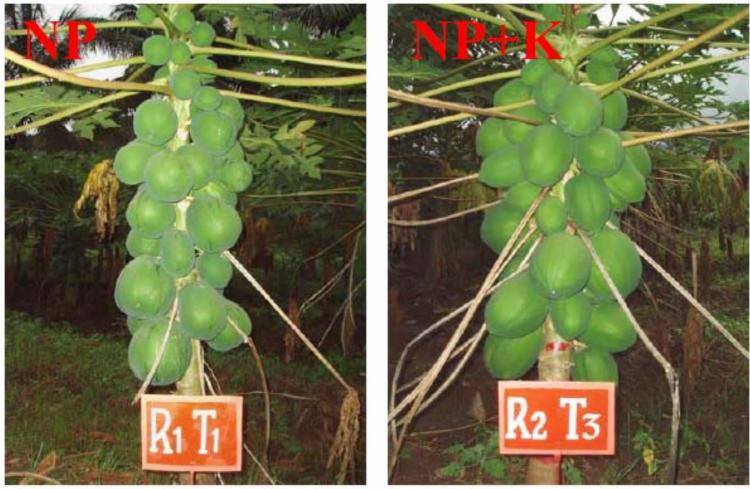


Why papaya needs heavy feeding

X Indeterminate growth habit

Continuous vegetative and reproductive growth phases

💉 Heavy yielder



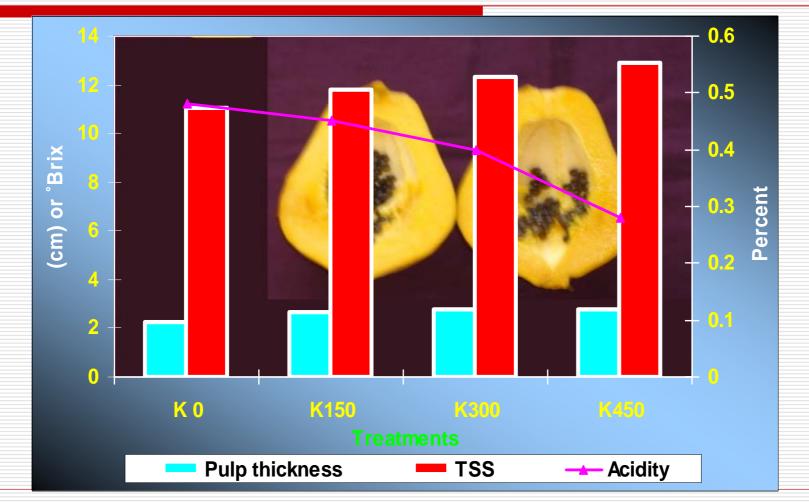
Effect of balanced fertilization on yield and quality of papaya

Treatment	Fruit yield (kg / plant*)	Fruit yield (t / ha*)	Fertilizeruseefficiency(kg /kg offertilizers ha ⁻¹)*	TSS (° Brix)
$T_1 - N_{300g} + P_{300g} + K_0$	99.9	249.7	-	10.8
$T_2 - N_{300g} + P_{300g} + K_{150g}$	115.5	288.7	104	11.7
$T_3 - N_{300g} + P_{300g} + K_{300g}$	146.0	365.3	154	12.0
$T_4 - N_{300g} + P_{300g} + K_{450g}$	113.3	283.3	30	12.8

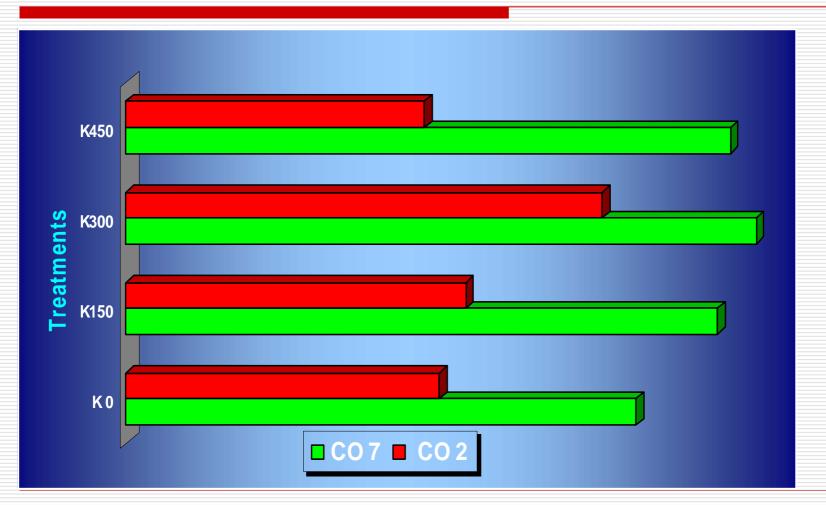
* Mean of four locations

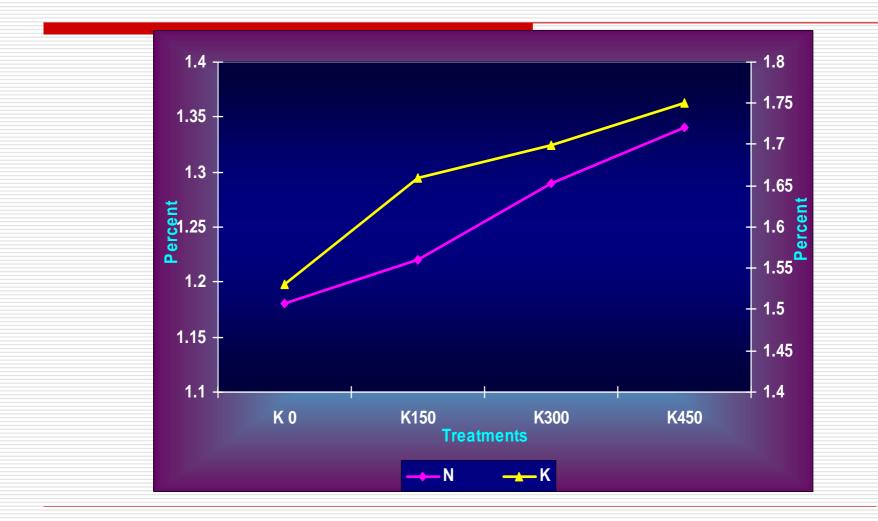
Kumar et al., 2006

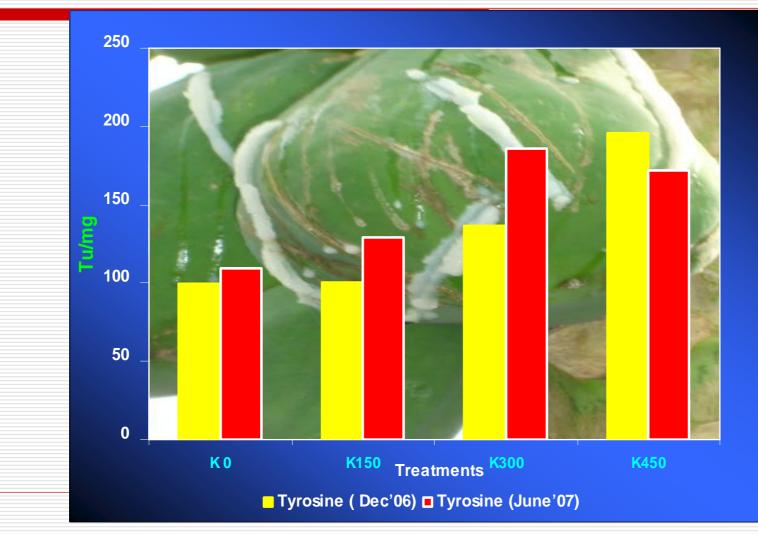
Papaya response to potash fertilizer at Vadipatti, Theni District, Tamil Nadu, India (2005)


 $T_1 - N_{300} + P_{300}$ $T_3 - N_{300} + P_{300} + K_{300}$

Kumar et al., 2006


Effect of K nutrition on fruit yield and yield traits in papaya


Effect of K nutrition on qualitative traits in papaya


Effect of K nutrition on carotenoid content in papaya

Effect of K on nutrient content in papaya

Effect of K nutrition on Tyrosine content in papaya latex

Effect of nutrient levels and split application on the fruit yield of papaya cv. CO2

Nutrient level	Yield of fruits / plant (kg)			
Frequency of application	12 splits / year	6 splits / year		
200:200:200 g NPK per plant / year	113.4	97.5		
300:300:300 g NPK per plant / year	202.9	167.0		
400:400:400 g NPK per plant / year	213.6	175.4		
SEd - 8.14 CI	D(0.05) – 16.55			

Ravichandranae et al. (2002)

Final Recommendation

Papaya can be balance fertilized with

N 300 P_2O_5 300 and K_2O 300 kg/ha/year

in six equal split doses to get higher yield with quality fruits / latex.

PINEAPPEE

Nutrient uptake of pineapple fruits

Yield (t/ha)	Source	Uptake or removal			kg/ha		1
(t/ha)		Tennovar	Ν	P_2O_5	K ₂ O	MgO	CaO
100	Cowie, 1951	uptake	123	34	308	-	-
81	Stewart and Py, 1956	uptake	574	126	1631	-	-
55	Martin- Prével, 1961	uptake	205	58	393	42	121

Fertilizer recommendation for optimum productivity of pineapple grown in some states of India

India official recommendations in 5 states							
State	Plants/ha (spacing)	Ν	P_2O_5	K ₂ O	FYM t/ha		
		kg/ha					
Assam	44 000	530	90	530	15		
Karnataka	(0.6 x 0.3 m)	350	130	440	30		
Kerala	40 000	320	160	320	25		
Tamil Nadu*	(0.6 x 0.3 m)	500	40	660	40-50		
West Bengal	40 000	400	200	400	20		
* ZnSO4 and FeSO4 spray where required Source : Tandon, 1987							

Effect of Sources of K on Pineapple

(Devadas & Kuriakose, 2006)

Fertilizers	Yield (t/ha)	Fruit size (kg)
4 g N+4 g P2O5+16 g K2O (Kcl)	67.0	1.47
4 g N + 4 g P2O5 + 16 g K2O (SOP)	70.9	1.60
4 g N + 4 g P2O5 + 0 g K2O	50.7	1.21
CD at 5 %	9.0	0.20

No systematic studies on the nutrient uptake or removal in sapota.

Solve 1.69 kg K₂O, 1.16 kg N, 1.12 kg Ca, 0.17 kg P_2O_5 and 0.14 kg MgO to produce 1000 kg of fruits (Avilon *et al., 1982*)

Fertilizer recommendations for sapota in certain states of India

States	Age	Ν	P ₂ O ₅	K ₂ O	Farm Yard Manure (kg/tree)
			Kg/ha	l	
Andra Pradesh	1-3 year	50	20	75	50
	11 & above	400	160	450	
Karnataka	1-3 year	50	20	75	50
	11 & above	400	160	450	50

Cont...

Maharashtra	1-10 year	50 g /yr			
	10 th year	500			10-15
Orissa	Adult	45	150		15 kg farm yard manure + 250g Stearameal
Tamil Nadu	Annual increase	30	30	50	10
	I year	30	30	50	10
	Adult	150	150	250	50

AONLA

Emblica officinalis (Euphorbiaceae)

→ Area : 50,000 ha

Production : 1,50,000 tonnes

Cultivable area increases every year.

Two flowering seasons : February- March and June – July

→ Existing recommendation :

→ 800 g N, 640 g P_2O_5 , 750 g K_2O and 30- 40 kg FYM

Balanced fertilization need to be done

Future thrust

Systematic long term experiments need to be taken up to assess the individual effect of these major nutrients & their interaction on yield and quality in perennial fruit crops.

Research on INM

organic manures,
organic cakes
biofertilizers including mycorrhiza.

More emphasis on Nutrient recycling.

Research on fertigation in perennial fruit crops like mango, sapota, citrus is totally lacking.

Standardization of liquid bio fertilizers for all the fruit crops.

