International K symposium Bhubaneswar, India; 5-7 Nov. 2009

Implementing site-specific potassium management for rice-based cropping systems

Roland J. Buresh

International Rice Research Institute

Mirasol Pampolino and Christian Witt

International Plant Nutrition Institute, Southeast Asia Program

Rás Science frea frence Washi

This presentation was made at the IPI-OUAT-IPNI International Symposium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrien

Site-specific nutrient management (SSNM) for rice was developed from 1997 through a partnership of IRRI

SSNM developed through IRRI provides science-based principles for field-specific management of N, P, and K fertilizer

The principles initially established for rice are now applicable for wheat and maize

Can be downloaded at this website: http://tinyurl.com/6lp8zj

his presentation was made at the IPI-OUAT-IPNI International Symposium, 5-7 November 2009, OUAT

IRRI

What is the SSNM approach used by IRRI?

 Scientific principles for providing field-specific management of fertilizer N, P, and K for cereals

Fertilizer N management

- Determine total need for fertilizer N from
 - Estimated crop response to N and
 - Agronomic efficiency of fertilizer N
- Split apply N to match critical crop growth stages

Fertilizer P and K management

- Determine crop need for fertilizer P and K based on yield target and nutrient balance
 - 1. Set an attainable yield target
 - 2. Estimate P and K taken up by crop at targeted yield
 - 3. Calculate P and K balances that consider non fertilizer inputs
 - 4. Determine P and K rates based on maintenance (input = output
 - 5. Adjust P and K rates for estimated crop response to the nutrient

Reciprocal internal efficiency (RIE) = (kg nutrient per ton grain yield

This presentation was made at the IPI-OUAT-IPNI International Symposium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrient

IRRI

Contents

- Examine the grain yield nutrient uptake relationships used in SSNM for rice
- Highlight key factors influencing sustainable K management
 - Continuous rice cropping
 - Rice-wheat rotation
 - Rice-maize rotation
- Evaluate options for determining fertilizer K rates with SSNM

Conclusions on grain yield – nutrient uptake relationships for rice

- Reciprocal internal efficiencies (RIE) reported by Witt et al. (1999) remain valid for rice with harvest index ≥ 0.4
 - -N = 14.7 kg N/t grain yield
 - P = 2.6 kg P/t grain yield
 - K = 14.5 kg K/t grain yield
- Use higher RIE for varieties with harvest index < 0.4
- Adequate information exists on RIE for rice
- Analysis for wheat and maize is in progress through IPNI

This presentation was made at the IPI-OUAT-IPNI International Symposium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrien

IRRI

Contents

- Examine the grain yield nutrient uptake relationships used in SSNM for rice
- Highlight key factors influencing sustainable K management
 - Continuous rice cropping
 - Rice-wheat rotation
 - Rice-maize rotation
- Evaluate options for determining fertilizer K rates with SSNM

IRRI Effect of management scenarios on K balance for rice currently with all aboveground biomass removed

Future scenarios

- 1. Rice stubble retained
- 2. Rice stubble and straw return

Scenario	Rice straw returned (%)	K from organics (kg K/ha)	K from irrigation (kg K/ha)
Current	15	0	25
Stubble retained	40	0	25
Stubble & straw returned	100	0	25

Return of all straw maintains K balance.

This presentation was made at the IP-IOUAT-IPNI International Symposium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrien danagement for Food Production Ouality and Reduced Fundamental International Symposium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrien danagement for Food Production Ouality and Reduced Fundamental International Symposium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrien danagement for International Symposium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrien danagement for International Symposium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrien danagement for International Symposium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrien danagement for International Symposium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrien danagement for International Symposium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrien danagement for International Symposium in Internat

Effect of management scenarios on K balance for rice currently with stubble retention

Future scenarios

- 1. Combine harvesting (straw return)
- 2. Straw return + organic inputs

Scenario	Rice straw returned (%)	K from organics (kg K/ha)	K from irrigation (kg K/ha)
Current	40	0	25
Straw return	100	0	25
Straw return +organic	100	10	25

Return of all straw maintains K balance.

Organic material not needed as K source when straw returned.

IRRI Effect of management scenarios on K balance in rice-wheat system in NW India **Future scenarios** 1. Water saving (CA) 2. Water saving + wheat straw return K balance (kg K/ha/yr) 0 Wheat yield = 5 t/ha -20 Rice straw return = 100% -40 Scenario Wheat K from K from -60 straw rice wheat irrigation irrigation returned -80 (%) (kg K/ha) (kg K/ha) Scenario -100 Current **Current scenario** 15 75 10 Water saving -120 Water saving 25 10 15 Water saving & wheat straw return -140 Water saving + wheat straw return Rice grain yield (t/ha) Switch to water saving technology could increase need for K fertilizer

IRRI Effect of management scenarios on K balance in rice-maize system currently with maize residue removed

Future scenarios

- 1. All rice straw return
- 2. All rice & partial maize residue return

Rice yield = 5 t/ha
K from irrigation = 35 kg K/ha/yr

Scenario	Rice straw returned (%)	Maize straw returned (%)
Current	40	15
Rice straw return	100	15
Rice and maize residue return	100	40

ils presentation was made at the IPI-OUAT-IPNI International Symposium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrien

IRRI

Contents

- Examine the grain yield nutrient uptake relationships used in SSNM for rice
- Highlight key factors influencing sustainable K management
 - Continuous rice cropping
 - Rice-wheat rotation
 - Rice-maize rotation
- Evaluate options for determining fertilizer K rates with SSNM

Conclusions on cropping systems

- Rice-rice system
 - Key factor: fraction of residue retained
 - Key knowledge gap: K input with irrigation water
- Rice-wheat system
 - Key factor: K input with irrigation water
 - Key knowledge gap: Will water saving technology in NW India increase need for fertilizer K
- Rice-maize system
 - Key factor: High K demand for high-yielding crop
 - Key knowledge gap: scientific approach for determining K rates that balance sustainability and profitability

This presentation was made at the IPI-OUAT-IPIN International Symposium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrient Managements for Each Deviction Outside

IRRI

Conclusions on use of SSNM to determine K rates

- In situations with small or negligible crop response to K
 - Full maintenance application (input = output) is not profitable
 - Need science-based approach for determining K rates based on partial maintenance (input < output)
- In situations with large crop response to K
 - Need science-based approach for determining K rates based on response and partial maintenance
 - Agronomic efficiency preferred to recovery efficiency for determining K rate based on response

Need science-based approach for determining K rates that balance the trade offs between sustainable productivity and profitability