Effect of potassium fertilization on rapeseed and potassium application technique in China

LU Jian-wei^{1*} ZOU Juan¹ CHEN Fang² LU Ming-xing³

1 College of Resources and Environment, Huazhong Agricuture University Email: lujianwei@mail.hzau.edu.cn

2 Wuhan Botanical Garden, Chinese Academy of Sciences

3 Soil and Fertilizer Station of Hubei Province

Outline

- ➤ The Present Situation of Rape production in China
- Effects of K application on Rape

- ➤ Applicative Technique of K on Rape
- **Conclusions**

1. The Present Situation of Rape Production in China

- ➤ Chinese rapeseed area and product has been the largest in the world since 1999.
- Sichuan, Hubei, Hunan, Jiangxi, Anhui and Jiangsu province are the major rapeseed producer area in the country.
- ➤ Rape yield in China is about 1500 kg/ha, which is near the world average yield level, but much lower than that in Europe.
- At same yield level, oil content in Canada is 5% higher than that in China (42.6% vs 37.7%).

The Situation of Rape production in China (1999-2005)

Years	Planting area	General products	Per unit yield
1 ears	10^4hm^2	10 ⁴ t	kg/hm²
1999	689.9	1013.2	1469
2000	749.4	1138.1	1519
2001	709.5	1133.1	1597
2002	714.3	1055.2	1477
2003	722.1	1142.0	1582
2004	727.1	1318.2	1813
2005	733.6	1120.0	1527

Status of Soil Nutrient Resources in Yangtze River Area

- ➤ Yangtze River area is the major rapeseed production region (about 85% in China). Status of soil nutrient resources in this area is unique.
- ◆ Nutrients loss and output is intense due to its high density crops rotation.
- **♦** Nutrients input is deficient and unblanced.
- ◆ Several nutrients (N, P, K, B, Zn, Mo, S, Mg, Ca) were inadequate in same field.

Low soil available K content is the limit factor for rapeseed growth and yield.

Relationship between K Fertilization Rates and Rapeseed Yield

(Hubei province n=1301)

Yield classification (kg/ha)	Sample number	K ₂ O rate (kg/ha)	Average yield (kg/ha)	
≥2500	180	31	2876	
2000-2500	293	16	2224	
1500-2000	47 1	22	1699	
1000-1500	200	17	1210	
500-1000	145	9	757	
< 500	21	6	355	

Fig. NPK absorption for rapeseed at 1500 kg/ha yield

2. Effect of K application on Rapeseed

• Since 1980s' rapeseed K deficiency symptom was reported and K has significantly effect on rapeseed nowadays.

Effect of K application on rapeseed in different area (n=167)

Duovinas	Soil avail.	K ₂ O rate	Increme	Yield increment	
Province	K level (mg/kg)	(kg/hm ²)	(kg/hm^2)		of per kg K ₂ O (kg/kg K ₂ O)
Hubei	28-88	75-180	54-532	33.8	3.21
Anhui	34-120	120-135	126-638	25.3	3.45
Guizhou	59-97	90-112.5	154-650	34.4	5.68
Henan	77-172	90-120	152-257	15.8	1.68
Shanxi	71-143	45-90	123-247	11.1	2.75
Qinghai	85-105	80-100	87-368	22.0	2.47
Yunnan	48	90	462	41.2	5.13

Effect of N, P, K and B on Rapeseed in Hubei Province (n>30)

Nutrients	Efficient proportion (%)	Increment (kg/ha)	Increment (%)	Yield increment of per kg Nutrients (kg)	CK /+ K (%)	Net profit (¥/ha)	VCR
N	93	1243	84.1	6.9	54.3	2333	4.01
P_2O_5	80	558	53.0	6.2	65.4	832	3.10
K ₂ O	91	373	75.4	3.2	69.0	544	2.18
В	65	387	18.2	-	84.6	840	7.20

Effect of K on Rapeseed in Hubei Province

- \gt 80 field experiments were carried out on rapeseed in Hubei, the K_2O rate was 90 kg/ha to 180 kg/ha and most was 120 kg/ha.
- ➤ Yield increment with K application was 373kg/ha and increased by 75.4% based on NPB treatment. 1 kg K₂O application can get 3.21 kg seed and the VCR was 2.18.
- > 8.8% trials showed no significant effect to K fertilization (including decrease yield trials and increment less than 100 kg/ha), 87.5% trials showed K increased seed yield 100-1000 kg/ha.
- > 38.8% trials (31) showed no profit or low benefit from K application, the VCR was lower than 1.5, 43.8% trials showed K had significant profit, which VCR was higher than 2.
- ➤ 63.4% trials showed that K application increased oil content and received 146 kg/ha more oil; K had little effect on the content of protein but protein yield enhanced 70 kg/ha as a result of seed yield increasing.

3. Potassium Application Technique for Rapeseed

- > According to soil potassium supply ability
- > According to rape varieties and target yield
- > Timing of K application
- > Relationship and interaction between K and other nutrients
- Organic manure and straw returning into field

Potassium Recommendation for Rapeseed According to Soil Available Potassium Content and Target Yield

Target yield	Potassium recommendation (kg/ha K_2O)					
(t/ha)	Soil avail. K level < 50 mg/kg	50~75 mg/kg 7		> 100 mg/kg		
< 0.75	110	90	30	0		
0.75~1.50	110~190	90~160	30~60	0		
1.50~2.25	190~290	160~240	60~80	30~45		
2.25~3.00	290~360	240~300	80~100	45~60		
3.00~3.75	360~420	300~360	100~120	60~75		

K Accumulation and Proportion of NPK in Different Rape Cultivars

Rape Variety	Yield (kg/ ha)	K ₂ O demand for producing 100 kg seeds (kg)	Ratio of Nutrients Absorption N: P ₂ O ₅ : K ₂ O
Huaza No.12	2600	9.14	1:0.39:1.48
Zhongza No.11	2500	8.32	1:0.43:1.67
Jingza 106	2813	7.31	1:0.74:1.79
Yuhuang No.1	2076	13.0	1:0.43:1.13
Zhongshuang No.10	2139	8.27	1:0.71:2.08
Huashuang No.5	2015	6.38	1:0.63:1.88
Rongyou No.10	2625	5.67	1:0.41:1.16
Average	2395	8.30	1:0.50:1.60

K application at proper time

- Commonly, K fertilizer was applied at one time before sowing in large field produce. Early application of K promoted the development of root system and ensured seedlings to survive safely during winter.
- ➤ K accumulation reached the peak at bolting-flowering stage and the percentage was about 80% to the total uptake amount of K.
- ➤ It was suggested that K fertilizer should be split applied at several times on sandy soil.
- ➤ 60-70% of K should be used as base fertilizer and 30-40% can be applied in bolting stage.

Nutrients absorption for producing 100 kg seeds at different stages

- **▶** Rapeseed was sensitive to lack of N, P, K and B;
- ➤ Mg, S and Zn deficiency happened sometimes under high yield cultivation conditions.
- **Several nutrients** were inadequate at the same time in rapeseed area, and therefore K cooperated with other nutrients was important to improve seed yield and fertilizer use efficiency.

- > Balanced fertilization is the effective way for high yield and good quality on rapeseed.
- > Effect of K fertilizer is based on cooperating with other nutrient element.

K Absorption of Rice in Rice-Rapeseed Rotation System

Crop	Rice yield Straws yield _		Potassium accumulation (K ₂ O kg/ha)		Ratio of potassium accumulation (%)	
rotation	(kg/ha)	(kg/ha)	Rice	Straw	Rice	Straw
Rice- Rapeseed	7564-9585	7469-9056	27-42	262-366	9.3-10.3	89.7-90.7
Rice- Rice- Rapeseed	6737-6959	5683-5806	20-23	140-219	9.5-12.5	87.5-90.5

The experiment of Rice-Rapeseed was carried out in Jianghan Plain, double rice-Rapeseed in the east of Hubei Province.

K Return with Different Proportion of Rice-straw Returning into the Soil

Returning quantity	Proportion of	K ₂ O rate of returning (kg/ha)		
of straw into field kg/ha	returning %	Rice-Rapeseed	Rice-Rice-Rapeseed	
1500	20-30	53-61	37-57	
2250	30-40	87-101	63-94	
3000	40-50	116-135	84-126	
_	100	262-366	_	

It was suggested that returning rice-straw into field under rice-rapeseed double cropping system and covering rice-straw 1.5-3.0 t/ha in triple cropping system.

4. Conclusions

- Yangtze River area is the major rapeseed production region in China. Short input of K fertilizer and low soil available K content was the limit factor for rapeseed.
- ➤ Rapeseed yield improved significantly with K application in Hubei province. 1 kg K₂O application can get 3.2 kg seed, the VCR was 2.2 and K increased oil content as well.
- ➤ K application rate is determined according to soil K level, rape cultivars and target yield. At present production level, the K critical level in soil is about 100 mg/kg.
- ➤ It was suggested that suitable proportion of base fertilizer and bolting fertilizer was 2:1 under high yield cultivation conditions.
- > Several nutrients were inadequate at the same time in rapeseed area, and therefore K cooperated with other nutrients was necessary.
- > Returning rice-straw to soil in rice-rapeseed area should be a useful measure.

Thanks for pay attention.

Project support by:

➤ Agriculture Extension Program of Hubei Province

Key Program of Hubei Education Bureau

➤948 Program of MOA, China

>PPIC/PPI

> IPI

