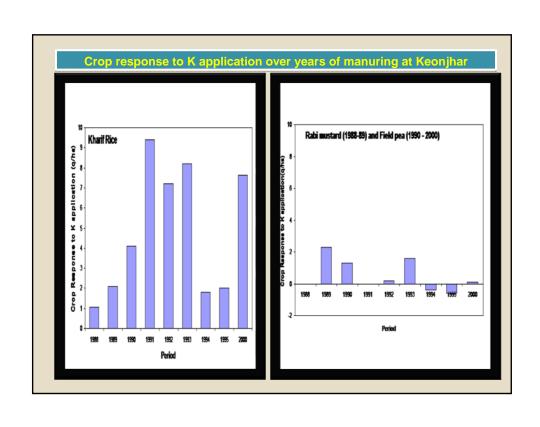
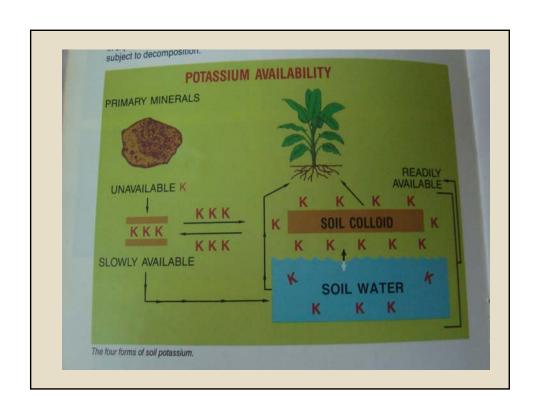
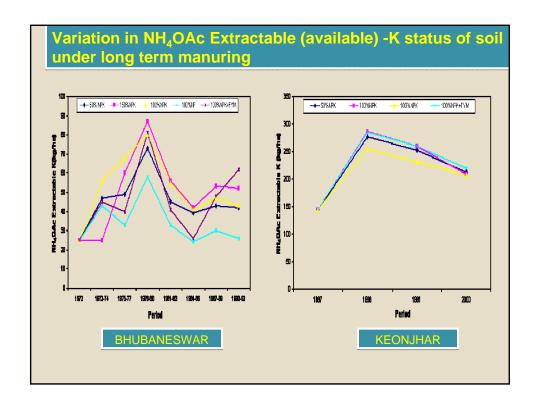

Nutrient Uptake by Some Selective Crops

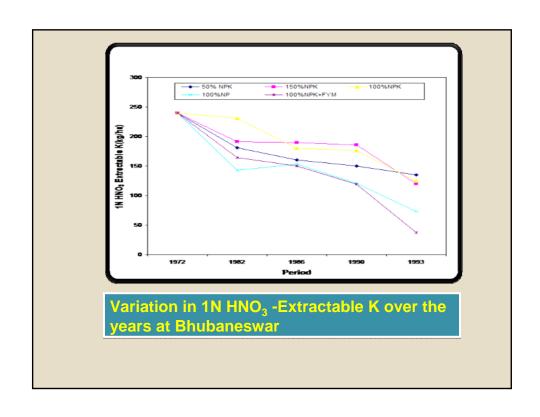

Crop	Yield(t/ha)	Nutrient Uptake(kg/ha)			
		N	P ₂ O ₅	K ₂ O	
Rice	6	100	50	160	
Wheat	6	170	75	175	
Maize	6	120	50	120	
Groundnut	2	170	30	110	
Rape seed	3	165	70	220	
Potato	40	175	80	310	
Onion	35	120	50	160	
Tomato	50	140	65	190	



Mitra and Misra(2001) reported huge nutrient deficit in the soils of Orissa

Nutrients	Deficit (000'tonnes)	Deficit (kg/ha)
N	-31.58	-3.78
P ₂ O ₅	-48.90	-5.88
K ₂ O	-242.87	-29.16





Mean annual K balance over 20 years (1972 - 1992) of cropping at Bhubaneswar

Treatments	Mean annual K application (kg/ha)	Mean annual K uptake (kg/ha)	Mean annual K balance (kg/ha)
100% NP	0	90	-90
100% NPK	100	137	-37
100% NPK + FYM	120	167	-47
150% NPK	150	157	-7
50% NPK	50	106	-55

NH₄OAc-K, 1N HNO₃-K and Total K in three layers at the end of 1987-88 cropping cycle at Bhubaneswar

Treatments	NH ₄ OAc-K (kg/ha)		1N HNO ₃ -K (kg/ha)		Total K (kg/ha)				
	0-15 cm	15-30 cm	30-45 cm	0-15 cm	15-30 cm	30-45 cm	0-15 cm	15-30 cm	30-45 cm
100% NP	35	26	33	150	154	113	2800	2700	3100
100% NPK	45	35	56	230	195	200	3300	3000	3500
100% NPK + FYM	43	25	38	167	102	147	2600	2200	3000
150% NPK	55	35	60	243	201	227	3300	2600	3000
50% NPK	48	35	55	200	158	183	2700	3000	3900
Initial	25	44	71	240	233	313	3500	3200	4100

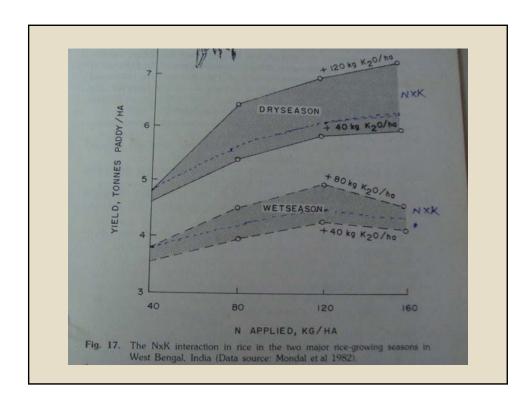
NH₄OAc-K and 1N HNO₃-K in three layers of soil after 12 years of cropping at Keonjhar

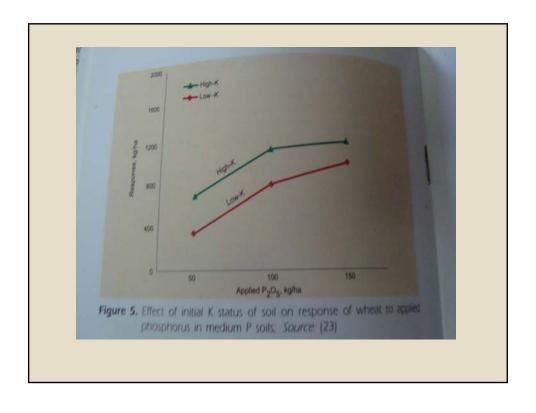
Treatments	NH ₄ OAc-K (kg/ha)			1N HNO ₃ -K (kg/ha)		
	0-15 cm	15-30 cm	30-45cm	0-15cm	15-30cm	30-45cm
100% NP	227	205	220	533	660	573
100% NPK	208	224	221	640	667	673
100% NPK + FYM	219	299	255	813	960	817
50%NPK	212	250	253	593	633	706
Initial	144	325	298	706	950	1098

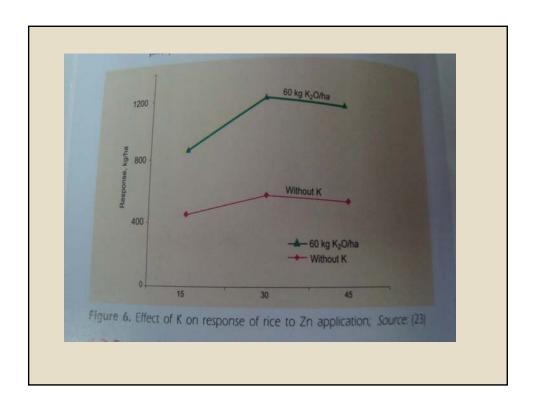
Effect of nitrogen and potassium levels on pod yield, shelling %, oil Content of rabi groundnut (Av.3yrs.) and K-status of alluvial soils after three years on a rice-groundnut cropping sequence

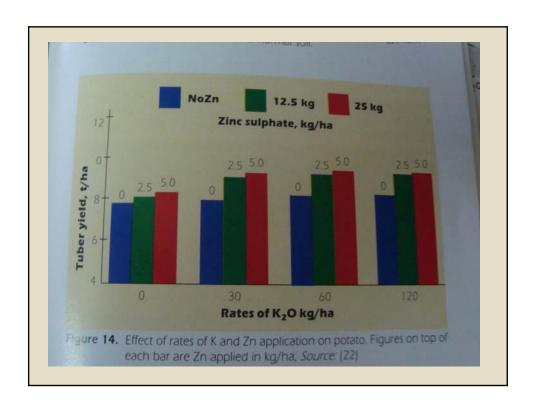
Treatments N:P ₂ O ₅ :K ₂ O	Pod Yield(q/ha)	Shelling %	Oil Content(%)
$N_{20}P_{40}K_0$	16.2	62.0	40.8
$N_{20}P_{40}K_{40}$	18.31	65.4	42.7
$N_{20}P_{40}K_{60}$	20.19	67.1	44.5
$N_{20}P_{40}K_{80}$	20.48	67.7	45.5
$N_0 P_{40} K_0$	16.59	63.3	51.0
$N_0 P_{40} K_{40}$	18.85	64.9	43.2
$N_0 P_{40} K_{60}$	20.93	68.0	45.5
$N_0 P_{40} K_{80}$	21.31	68.3	46.2

Effect of Potassium application on grain yield of green gram


Levels of K ₂ O (kg ha ⁻¹)	Crop Yield(q/ha)		
	1990-91	1991-92	Mean
Control(K ₀)	3.66	2.26	2.96
\mathbf{K}_{15}	3.94	2.46	3.20
\mathbf{K}_{30}	4.63	2.66	3.64
CD _{0.05}	0.44	0.27	


Effect of K & S on greengram


Kg/ha	Yield, kg/ha	% increase
Ko So	296	-
K 15	320	8
K ₁₅ S ₃₀	369	25
K ₃₀	364	23
K ₃₀ S ₃₀	421	42


Effect of N-K interaction on grain yield of green gram

Treatments(N-P ₂ O ₅ -K ₂ O) (kg/ha ⁻¹)	Grain yield(kg ha ⁻¹)		
20-40-0	333		
20-40-20	483		
20-40-30	433		
20-40-40	492		
0-40-0	342		
0-40-20	567		
0-40-30	538		
0-40-40	454		
CD 005: N-Level: NS;	K-Level: 90 NXK: NS		

CONCLUSION & SUGGESTIONS

- □The Conventional Practice of Plant Nutrition has caused huge negative balance of K in the soils Orissa as the per ha use is very less.
- This exploitive activity has caused huge mining of reserve K from Soil.

- □The present method K indexing by NH₄OAC extractable K is not sufficient to diagnose crop response & K deficiency in soil.
- ☐ The method of K indexing needs to be modified to suit to different type of soils.
- ■Methods for integration of exchangeable and non exchangeable K for soil testing purposes should be developed and calibrated.
- □ Sampling may be done from deeper layers as sub soil also significantly contributes to K nutrition even in shallow rooted crops.

- ☐ Potassium has got significant interaction with many nutrients and practices.
- ☐ While recommending K fertilizers these effects need to be given due consideration.

- ☐ There is large potential of non fertilizer source of K in crop residues and organic manures.
- ☐ There is an urgent need to exploit these sources in the nutrient management plan for all cropping systems.

□Instead of considering crop respone as a criterion, K needs to be applied to crops from all possible sources in order to maintain or improve the K status in the soil

