POTASSIUM MANAGEMENT IN VEGETABLES, SPICES AND FRUIT CROPS

Dr.H.K.Senapati,Professor and Dr.G.H.Santra,Assoc.Professor

Department of Soil Science and Agricultural Chemistry College of Agriculture, O.U.A.T., Bhubaneswar

INTRODUCTION

- India is the second largest producer of vegetables and fruits but largest producer of spices in the world, next to China.
- Fruit crops in general remove much higher quantities of potassium and usually carry high amount of K in the marketable parts.
- Most crops absorb as much or more K than they absorb N from the soil.
- ✤ Nutrient removal continues to exceed nutrient addition.
- ♦ Many Indian soils are deficient in K and the area is increasing.
- Orissa has a tremendous potential for cultivation of varieties of vegetable crops almost round the year, taking the advantages of the agro-ecological flexibility that the state experiences.
- Although the potassium content of the soils of orissa is medium, many vegetable crops have been found to give good response to application of potassium.
- The vegetable crops such as potato, sweet potato, radish, brinjal, tomato, turnip, carrot, onion and chilli are the principal vegetable crops cultivated in Orissa which need care with regard to potassic fertilizer for getting higher yields of good quality.

Systematic outlay of steps involved in					
executing	nutrient m	anagement	program		
MARKET DEMAND	MONITORING	nataria Cattornataria	MARKET		
	Visual, Leaf tissue a Irrigation & drainage Wat	naiysis, Soli anaiysis,	Eresh or processed fruit		
FERTILIZER	FERTILIZER RATES	FERTILIZER TIMING	FERTILIZER		
SOURCES	Tree age	AND FREQUENCY	PLACEMENT		
Economic situation	Production history	Climatic cycles	Root zone location		
Application method	Variety fruit stock	Tree age	Application methods		
Tree age	Soil type(organic matter)	Soil type(vulnerability			
Soil pH	Organic soil arrangement	to leaching)			
Soil type(vulnerability	Destination of fruit	Fertilizer nutrients and			
to leaching)	Economic situation	source			
Salinity	Diagnostic information	Time of year			
		Irrigation method			
INTERACTIONS	FERTILIZER APPLICAT	ION	METHODOLOGY		
Water management	Economics, Fertilization t	iming and frequency	Broadcast dry fertilizer		
Weather variations	Availability of equipment	nt & lab our, Type of	Fluid suspension (under		
Grove floor	irrigation system		tree boom)		
management	Timing of other groove operations, Environmental Fertigation				
Tree size control	considerations		Foliar		
EVALUATION					
Fruit yield and quality(fresh vs. processed), Tree	size, foliage cover, canoj	py density, growth habit,		
Leaf tissue and soil ana	lysis(visual & laboratory),	Economics			

Deficiency symptoms

- ✤ Growth rate and vigor
- Darkening of leaves
- Chlorotic appearance
- ✤ Necrotic
- ✤ Hidden hunger
- Resistance
- Roots
- Disease and pest incidence
- Quality of produce

F	Fertilizer schedule for some important vegetable crops suitable for Orissa							
	Sl.No.	Crop	FYM(cartload /ha)	N(kg/ha)	P ₂ O ₅ (kg/ha)	K ₂ O(kg/ha)		
	1	Brinjal	25	125	75	125		
	2	Tomato	25	125	70	75		
	3	Chilli	25	110	70	75		
	4	Okra	25	110	60	75		
	5	Cabbage	25	120	40	60		
	6	Cauliflower	25	125	40	60		
	7	Knolkhol	10	75	50	50		
	8	Beans	20	25	50	25		
	9	Country bean	25	25	50	50		
	10	Parwal	25	25	40	112		
	11	Radish	25	50	50	100		
	12	Onion	25	62	50	90		
	13	Sweetpotato	15	120	60	75		
	14	Colocasia	20	50	50	80		
	15	Yam	15	80	60	80		
	16	Pumpkin	25	50	60	75		
	17	Snake gourd	25	50	30	75		
	18	Ridge gourd	20	50	30	75		
	19	Cucumber	20	50	30	75		
	20	Bitter gourd	25	50	30	50		
	21	Watermelon	25	55	55	55		

Sl.No.	Crop	Produce	Removal Kg/ton of produce N		Ratio of K_2O and P_2O_5 removal relative to N		P_2O_5 o N	
				P ₂ O ₅ K ₂ O		N	P_2O_5	K ₂ O
1	Potato	Tuber	3.9	1.4	4.9	100	35.9	125.6
2	Cassava	Tuber	7.8	1.2	5.1	100	15.4	65.4
3	Cowpea	Fodder	13.8	6.6	17.6	100	47.8	127.5
4	Tomato	Fruit	4.1	1.5	5.9	100	36.6	393.9
5	Coconut	1000nuts	7.1	3.5	10.7	100	49.3	150.7
5	Cardamom	Pods	122.0	14.0	200.0	100	11.5	163.9
7	Cashew nut	Nuts	88.0	25.0	42.0	100	28.4	47.7
8	Mango	Fruit	6.7	1.7	7.4	100	25.0	110.0
9	Banana	Fruit	5.6	1.3	20.5	100	22.7	366.5
10	Citrus	Fruit	1.1	0.6	2.9	100	54.6	259.1
11	Pineapple	Fruit	1.8	0.5	6.3	100	30.0	353.3
12	Papaya	Fruit	2.8	0.8	2.3	100	26.7	80.0
13	Grape	Fruit	8.0	2.0	9.0	100	25.0	112.5
14	Lichi	Fruit	22.0	3.5	29.0	100	15.9	131.0

Removal of Potassium from the soll by some							
vegetable crops							
Yield(t/ha)	Removal of K ₂ O(kg/ha)						
40	310						
50	190						
50	300						
70	480						
50	350						
20	170						
	1 From the sc ble crops Yield(t/ha) 40 50 50 70 50 20						

5	Cauliflower	50	350
6	Knolkhol	20	170
7	Carrot	30	200
8	Radish	20	120
9	Beet	25	112
10	Onion	35	160
11	Leek	30	240
12	Cucumber	40	120
13	Pumpkin	50	160
14	Muskmelon	15	97
15	Pea	9	88
16	Beans	15	160
17	Okra	20	90
18	Celery	30	300
19	Lettuce	30	160
20	Spinach	25	200
21	Asparagus	5	150
22	Cassava	40	350
23	Sweet potato	40	340
24	Elephant-foot yam	50	245
25	Yam	14	86

Effect of K with N application on yield of tomato(t/ha)							
Rate of K ₂ O(kg/ha)	Rate of	N	(kg/ha)				
	132	198	264				
0	15.6(41)	16.5(56)	20.5(55)				
330	38.7(80)	45.8(85)	58.7(85)				
Figures	in parenthesis	indicate % ma	arketable				

Fertig	Fertigation scheduling and uptake of potassium								
Сгор	Total K(kg/ha)	Crop developme nt stage	Crop developme nt week	K application Rate (kg/ha/day)					
Cucumber	112	1	1	0.9					
		2	2	1.5					
		3	6	1.9					
		4	1	1.5					
Tomato	149	1	2	0.9					
		2	3	1.5					
		3	7	1.9					
		4	1	1.5					
		5	1	0.9					
Pepper	112	1	2	0.9					
		2	3	1.5					

Treatments	Yield	
(kg/ha)	(q/ha)	
K-0	66.95	
K-75	67.80	
K-150	83.10	
C.D.(0.05)	2.87	

Effect of K application on Chilli (cv.pant)					
Doses of K ₂ O(kg/ha)	Yield of green chilli(q/ha)				
K-0	17.51				
K-40	18.28				
K-80	19.70				
C.D.(0.05)	9.25				

ffect of different doses of Potassium on bulb yi of Onion(cv.Nasik red)						
TreatmentsK ₂ O(kg/ha)	Bulb Yield(q/ha)					
K-0	50.00					
K-50	72.83					
K-100	72.67					
C,D.(0.05)	6.82					

Accumulation of potassium at different stages of potato growth in the plains

	D	ays aft	er plan	ting				
Plant part	30	40	50	60	70	80		
	K ₂ O(Kg/ha)							
Leaves	29	49	35	37	29	28		
Stems	13	9	6	8	8	6		
Tubers	1	25	62	82	98	121		
Roots	6	4	2	2	2	2		
$Total(K_2O)$	49	87	105	129	137	157		
					Å	/		

Accumulation of potassium(K ₂ O kg/ha) at different stages of potato growth in the hills						
Days after planting						
Fiant part	65	85	105			
Tops	108	89	64			
Tubers	29	121	160			
Roots	15	9	-			
Total K ₂ O	152	219	224			

Respor	nse rates o di	f potato ifferent s	to K appli oils	cation in
Rate	Response,	kg tuber /	kg Nutrien	t applied
(kg/ha)	Alluvial	Hill	Black	Red
29	76	72	21	48
59	64	59	15	42
88	55	49	13	38
118	44	31	8	31
146	34	27	6	25

Doses of K	for top dres tissue	sing potato o e testing	on the basis of
Potato	Petiole	Kg K ₂ O	Response
cultivar	K%	/ha to be	to top
		top	Dressing,
		dressed	t/ha
Kufri jyoti	10.0	105	4.2
	10-11	80	3.2
	11-12	43	2.3
	12.0	43	1.8

Removal of po	otassium by some o	f the fruit crops
Сгор	Yield(t/ha)	Uptake of K(kg/ha)
Mango	15	100
Banana	58	1180
Guava	20	150
Pineapple	85	530
Papaya	80	175

U ptake of	Potassium f fruit o	from some crops	e important
Sl. No.	Crop	Yield (t/ha)	Total K uptake (Kg/ha)
1	Banana	38	1053
2	Pineapple	84	440
3	Papaya	150	415

Effect of	K applicati and	on on yield a yield of bar	ttributing nana	characters
K ₂ O	Yield	CO	mponents	5
applied (g/plant)	Kg/ bunch	Hands/ bunch	Fruit/ bunch	Fruit length (cm.)
0	4.4	7.5	114	18.3
150	6.6	8.1	130	19.0
450	7.2	8.9	140	19.5
600	7.9	9.2	164	20.0

Effect of j	potash on	banana y (r ield and c Quality pa	quality rameters	
K ₂ O applied (g/plant)	Total yield (t/ha)	Fruit weight (g)	Total soluble solids(Br ix)	Total sugar (%)	Ascorbic acid (mg/100 g pulp)
200	37.0	115.2	18.4	12.6	5.69
400	50.7	132.7	19.3	14.2	7.45
600	55.9	138.8	20.1	16.7	9.86
CD(5%)	0.87	4.45	0.18	0.15	0.50

K dose (g/plant)	Plant ht. at Shooting (cm.)	Pseudostem Circum- ference at shooting (cm.)	Leaf length (cm.)	Leaf Width (cm.)	Canopy spread at Shooting (cm.)	Days to shooting
0	143.72	50.28	126.39	111.39	26.31	277.00
100	144.86	54.17	127.50	119.72	28.14	292.00
200	144.97	55.42	132.64	124.86	30.14	275.00
300	145.81	58.06	135.143	128.19	31.33	282.00
CD at5%	4.59	3.82	3.64	6.52	1.00	NS

	Days to	Days	Bunch	Finger	TSS	Pulp/Peel
K dose (g/plant)	maturity	from Shooting	wt. (kg)	wt.	(%)	ratio
<u> (9.1.111)</u>		to maturity				
0	373.0	96.0	8.2	135.3	22.9	3.53
100	377.0	98.0	11.1	170.6	23.1	3.61
200	374.0	99.0	12.2	181.5	23.3	3.65
300	383.0	101.0	13.5	186.0	23.4	3.67
CD(0.05)	11.6	6.8	2.3	21.1	0.07	

Critical conce	ntration of K	(%) in the d	ry matter of l	eaf parts of b	anana
	Lamina-3		Mid-rib-3		Petiole-7
	3.0		3.0		2.1
Fable 20. Eff	ects of N and	K levels on	bunch weight	t (kg) of bana	na(cv.Champ
Levels	K ₂ O-150	K ₂ O-300	K ₂ O-450	K ₂ O-600	Mean
N-75	6.5	6.8	6.9	7.2	6.85
N-150	6.7	6.9	7.2	7.3	7.03
N-225	6.8	7.0	7.5	7.8	7.28
Mean	6.67	6.9	7.2	7.43	
Treatmen			C.D.(0.0		
t			5)		
N			0.316		
K			0.274		
NxK			0.547		
					7

Effect of	of levels	s of K o rate	n grow oon bar	th, yiel nana	d and q	luality	of
K ₂ Olevel (g/plant)	Full bunch wt.(kg)	No. of Hands/b unch	No. of fingers/b unch	Wt. of Finger (g)	Fruit Yield (t/ha)	Total soluble Solids (%)	Pulp :Peel ratio
50	5.1	6	56	90.5	15.6	20.4	2.1
100	6.3	6	61	104.3	19.5	21.5	2.4
200	10.7	7	86	123.7	33.0	22.3	2.7
300	12.0	8	94	128.8	37.1	22.7	2.9
400	19.6	10	137	143.3	60.3	24.3	3.4
500	9.6	7	80	119.5	29.5	23.2	2.3
CD(0.05)	0.41	0.68	5.11	7.08	1.22	0.60	0.25

Effect of NPK application on yield and quality of banana

Treat (g/	ments I plant/y	Doses r)		(Quality I	Paramet	ers	
N	P ₂ O ₅	K ₂ O	TSS (%)	Reducing Sugar (%)	Acidity (%)	Starch (%)	Yield (kg/plant)	No. of Fingers / bunch
0	0	0	15.90	6.36	0.176	3.23	19.66	191.6
75	90	300	17.03	7.63	0.166	2.10	33.93	<mark>24</mark> 0.6
150	90	400	17.33	7.80	0.183	1.96	40.43	246.1
CD (0.05)		0.50	0.76	NS	0.310	1.90	2.30	P
								/

25 50 75 100 SE/Cl (0.05 No. of tubers/plant 11.42 14.35 12.81 11.33 1.185/R Mean tuber Wt.(g) 9.78 10.00 12.57 9.72 0.664/R Tuber yield 8.15 9.11 8.88 8.58 0.486/R	K levels(kg/ha)										
No. of tubers/plant11.4214.3512.8111.331.185/NMean tuber Wt.(g)9.7810.0012.579.720.664/NTuber yield8.159.118.888.580.486/N		25	50	75	100	SE/CD (0.05)					
Mean tuber Wt.(g) 9.78 10.00 12.57 9.72 0.664/1 17 Tuber yield 8.15 9.11 8.88 8.58 0.486/1	No. of tubers/plant	11.42	14.35	12.81	11.33	1.185/NS					
Tuber yield 8.15 9.11 8.88 8.58 0.486/1	Mean tuber Wt.(g)	9.78	10.00	12.57	9.72	0.664/1.9					
(t/ha)	Tuber yield (t/ha)	8.15	9.11	8.88	8.58	0.486/NS					

Potassium budgeting in 'Nagpur' mandarin orchards (A case study of K mining in central India)

	83
	27
)-	20
	36
	25years
	- -)- -

Effec	t of K	on flo Mang	werin o(cv.A	g, yiel mrap	d and alli)	qualit	y of
Treat ments	Male flower /plant	Herm ophro dite/ plant	Sex ratio	No. of Fruits/ plant	Yield/ Plant (kg)	Fruit wt.(g)	Pulp Wt.(g)
K-0	181	68	1:2.63	79	13.26	169.00	103.25
K-100	190	72	1:3.03	84	15.18	181.50	103.75
K-150	220	94	1:1.92	86	16.24	183.75	109.00
							/

Effect of K on quality of Guava

K levels (g/plant)	Fruit weight	TS S	Total sugar (%)	Reduc ing sugar (%)	Acidity (%)	Vit.C (mg/100g.)
K-0	136.7	8.8	8.01	4.89	0.27	190.4
K-130	141.5	8.8	8.22	5.11	0.29	193.2
K-260	146.4	8.9	8.38	6.04	0.30	196.0

Eff	ect of pot Pap	assium o aya(cv.P	n growth usa mages	and yield sty)	of
K ₂ O (g/plant)	Plant ht cm.)	Stem girth (cm)	Days to 1 st fruiting	No. of fruits /plant	Fruit wt. (gm.)
0	119	22.6	278	2	472
90	128	24.9	268	3	697
180	133	26.3	256	5	767
360	150	28.9	252	7	925
540	158	30.3	249	8	969
720	146	27.5	260	5	719
900	141	26.5	264	5	688
CD(0.05)	11.6	1.2	8.8	1.3	68.4

Effect of nutrients on tuber yield of arrowroot

Treatments		Tuber y	ield (t/ha)		
K2O/N (kg/ha)	0 2	25	50	75	Mean
0	5.34	12.30	9.17	10.50	9.33
25	7.71	10.67	8.96	7.30	8.66
50	12.54	8.84	11.00	9.96	10.59
75	8.55	10.96	13.37	12.30	11.29
Mean	8.54	10.69	10.62	10.02	
CD N-1.468	3, K-1.468	, NxK-2.93	3		

(i) Pre rainy season(ii) Middle of the rainy seasons	
(iii) Rainy season is about to end . The fertilizer is applied in the f	ollowing manner
Age of the plant	K ₂ O(g/plant)
1 st year	200
2 nd year	400
3 rd year	600
4 th year	800
5 th year and above	800

Vegetables	Portion	K content(mg)
Asparagus	¹∕₂ cup	279
Avocado	¹∕₂ medium	530
Broccoli, cooked	1 cup	456
Cucumber, sliced	¹∕₂ cup	80
Green beans, cooked	1 cup	373
Mushrooms	1 cup	550
Tomato	1 each	273
Tomato juice	1 cup	537
Fruits		
Banana	1 medium	451
Orange	1 medium	273
Grape fruit, white	¹ / ₂ grape fruit	175
Orange juice	1 cup	474
Watermelon slice	1 eup	186

Crop	K ₂ O(kg/ha
Ginger	45
Turmeric	60
Chilli	30
Onion	113
Garlic	53
Coriander	19
Fenugreek	19
Black cumin	15
wanseed (Bishop weed)	53

Application of potassium phosphate (0.3%) In Pepper :

- Resulted in highest values of
- Sprouting-90.33%
- ✤ Plant height-19 cm.
- ✤ Number of leaves/plant -20.67
- ✤ Oleoresin-8.8-11.95%
- ✤ Peperine-3.6-4.5%
- ✤ Disease incidence-17.67%
- Fungi population-15x102 cfu/g of soil
- Tricoderma population- 5.33x102 cfu/g of soil
- Bacterial population-153x104 cfu/g of soil
- Contain highest amount of minimum disease incidence

2^{nd} year planting 70 (2 applications) 3^{rd} year planting 70 (3 applications)	Age of plant	Kg/ha –Rain fed areas
2 year planting 70 (2 applications) 3 rd year planting 70 (3 applications)	2 nd year planting	70 (2 applications)
2rd year planting 70 (2 applications)	2 year planning	
5 year planning 70 (5 applications)	3 rd year planting	70 (3 applications)

Effe	ect of K	on grov	wth and	yield of	f turme	eric
K (kg/ha)	Plant ht. (cm.)	Tiller/ Clump	Rhizome Yield (t/ha)	Additional Cost due to K ₂ O (Rs)	Cost of additional produce due to K ₂ O (Rs)	Additional benefit Over control (Rs)
0	2.7	57.5	8.14	437	6320	5883
45	3.1	64.3	9.72	873	8360	7487
90	3.1	64.9	10.23	1310	7520	6210
135	3.1	63.8	10.02	-	-	
N.B: C	Cost of MO	P-Rs.580.()0/q			1

Role of 1	notassium on	growth and	vield of	Ginger:
	potassium on	gi uwun anu	yiciu ol	Unger.

For ginger the recommended dose of K_2O is 100 kg/ha, which is to be applied at the time of planting and at the time of second top dressing(90 days after planting).

Effect of graded doses of K on the yield of ginger

K ₂ O (kg/ha)	Rhizome yield(q/ha)
K-0	81.7
K-50	86.8
K-100	91.7
K-150	01 7
IX 150)1.1
Recommended doses of	f K for Chilli, Garlic and Coriander
Recommended doses of Crop	f K for Chilli, Garlic and Coriander K(kg/ha)
Recommended doses of Crop Chilli	f K for Chilli, Garlic and Coriander K(kg/ha) 75
Recommended doses of Crop Chilli Garlic	f K for Chilli, Garlic and Coriander K(kg/ha) 75 50

Conclusion Efficient use of Fertilizer potassium

- * Soil
- * Crop
- Stress Situations
- ***** Disease incidence
- ✤ Time of application
- ✤ Intensity of farming

