Theme: Refinement of K recommendations in Vertisols

UNIVERSITY OF AGRICULTURAL SCIENCES, DHARWAD

Dr. B. BASAVARAJ

Professor of Soil Science & Agril. Chemistry College of Agriculture, DHARWAD (Karnataka)

Distribution of vertisols and associated soils in India

State	Total area under vertisols and	Area under vertisols and associated soils expressed as			
State	associated soils (million ha)	Gross vertisols area in India (%)	Total geographical area in India (%)		
Maharashtra	29.9	35.5	7.9		
Madhya Pradesh	16.7	23.0	5.1		
Gujarat	8.2	11.9	2.6		
Andhra Pradesh	7.2	10.0	2.2		
Karnataka	6.9	9.4	2.1		
Tamil Nadu	3.2	4.2	1.0		
Rajasthan	2.3	3.0	0.7		
Orissa	1.3	2.0	0.4		
Bihar	0.7	1.0	0.2		
Uttar Pradesh	Negligible	Negligible	Negligible		
Total	76.4	100.0	22.2		

Source: Murthy (1981)

Note: 27.78% of worlds vertisols are in India (total vertisols in the world is 275 Mha)

Event: 7th IPI-FAI Round Table in collaboration with IPNI Date and venue: 20/3/2012; NAAS Committee Room No.1, NASC Complex, New Delhi Theme: Refinement of K recommendations in Vertisols

- Vertisols comprises of clay-textured soils occur extensively in tropics and temperate zones.
- Vertisols are synonymous with black cotton soils, black earths, dark clays, grumusols and regurs
- Vertisols of India have been classified in to

Deep black soils

Medium and light black soils

Shallow black soils.

(50% of total vertisols are shallow to medium black)

Theme: Refinement of K recommendations in Vertisols

Mineralogical properties of vertisoils (Karnataka)

Clay - Chlorotized iron-rich smectite

No kaolinite: No mica

Sand - Orthoclase, microcline and albite feldspars

Silt - Alkali feldspars

Forms and status of potassium in vertisols of India (mmol/kg)

State	Water soluble	Exchangeable	1 N HNO ₃ - Soluble	HCI-soluble	Total
Andhra Pradesh	0.1	5.5	19.7	-	-
Bihar	Trace	2.5	36.0	-	231.9
Gujarat	0.9	12.8	81.0	91.9	
Karnataka	Trace	5.5	15.0	-	173.4
Madhya Pradesh	Trace	10.0	· ·	-	-
Maharashtra	0.1	4.1	19.9	62.6	139.1
Rajasthan	0.1	10.0	36.0	120.0	256.0
Tamilnadu	0.3	5.1	21.0	7.2	230.0
Uttar Pradesh	Trace	5.6	31.0	121.5	600.0

Source: Zende 1978

Theme: Refinement of K recommendations in Vertisols

Potassium	tixation ca	nacity of	vertisol	s of India
rutassiuiii,	IIXALIUII La	ipacity or	vei tisui	אווו וט כ

State	K fixed (mmol/kg ⁻¹⁾	K fixation (%)	K saturation (%)
Andhra Pradesh	37.0	9.1	1.6
Bihar	-	39.7	1.4
Gujarat	12.0	11.0	2.7
Karnataka	13.0	42.0	1.2
Madhya Pradesh	30.0		1.5
Maharashtra	70.0	21.3	1.0
Rajasthan	30.0	-	-
Tamilnadu	-	11.6	-)
Uttar Pradesh	13.0	28.0	2.1

Source : Zende (1978)

References

Zende, G.K. 1978, Potassium dynamics in black soils in potassium in soils and crops. Potash Research Institute of India, New Delhi 51-68

A.S.P.Murthy, 1981., Distribution, properties and management of vertisols of India, Advances in Soil Science Vol. 8 PP 151-215.

Event: 7th IPI-FAI Round Table in collaboration with IPNI Date and venue: 20/3/2012; NAAS Committee Room No.1, NASC Complex, New Delhi Theme: Refinement of K recommendations in Vertisols

No Agr	Agro-climatic zone	Location		Water soluble K	Exchangea ble K	K fixation capacity of surface soil
		Place	District	ppm	ppm	Per cent
		Rice based cr	opping system			
1	Northern Dry Zone	Gangavati	Koppal	3.0	168.0	20.4
2	Northern Transition Zone	Belgaum	Belgaum	2.0	232.0	35.0
		Sugarcane based	cropping syst	em		
3	Northern Dry Zone	Gangavati	Koppal	3.1	265.0	51.5
4	Northern Dry Zone	Sirguppa	Raichur	3.9	234.0	30.8
5	Northern Dry Zone	Godageri	Belgaum	1.9	148.0	44.5
6	Northern Dry Zone	Sankeshwar	Belgaum	3.5	261.0	36.3
7	Southern Transition Zone	MK Hubli	Belgaum	5.9	156.0	46.0
8	Northern Dry Zone	Hunnur	Bijapur	11.3	281.0	38.9
9	Northern Dry Zone	Mudhol	Bagalkot	2.0	179.0	47.9

		Cotton	based cropping	g system		
.0	Northern Dry Zone	Aikur	Gulbarga	16.1	217.0	18.2
1	Northern Dry Zone	Rampur	Raichur	13.5	160.0	23.6
2	Northern Dry Zone	Hitnalli	Bijapur	14.9	234.0	23.2
.3	Northern Dry Zone	Bagalkot	Bagalkot	14.3	192.0	26.8
4	Northern Dry Zone	Hanchinal	Belgaum	14.0	175.0	23.0
.5	Northern Dry Zone	Hadagali	Gadag	18.0	118.0	15.6
6	Northern Dry Zone	Hagri	Bellary	12.4	167.0	19.6
.7	Northern Dry Zone	Sindhanur	Raichur	15.1	143.0	16.2
.8	NE Transition zone	Bailhongal	Belgaum	13.5	171.0	17.4
9	NE Transition zone	Dharwad	Dharwad	11.0	190.0	22.8

red chilli fruits					
Treatments	Ascorbic acid (mg/100g) in green fruits	Colour value (ASTA** units)	Oleoresin (%)		
T ₁ - 100% RDK as MOP by basal application	131.54	184.92	13.21		
T ₂ - 100% RDK as SOP by basal application	136.93	186.04	13.56		
T ₃ - 100% RDK as MOP by ½ basal + ½ 45 DAT	144.62	187.74	13.92		
T ₄ - 100% RDK as SOP by ½ basal + ½ 45 DAT	150.70	194.90	14.28		
T ₅ - 150% RDK as MOP by basal + ½ 45 DAT	168.82	202.68	14.81		
T ₆ - 150% RDK as SOP by basal + ½ 45 DAT	175.16	225.28	16.79		
T ₇ – 200% RDK as MOP by ½ basal + ½ 45 DAT	165.77	204.57	15.12		
T ₈ - 200% RDK as SOP by ½ basal + ½ 45 DAT	171.59	221.12	16.97		
T ₉ - 100% RDK as MOP by basal + 2 per cent foliar spray of KCl at 75 DAT	130.64	182.44	12.28		
T ₁₀ - 100% RDK as SOP by basal + 2 per cent foliar spray of K ₂ SO ₄ at 75 DAT	132.30	206.96	13.11		
S.Em±	6.510	7.602	0.614		
CD(0.05)	19.333	22.576	1.824		

K rate (Kg/ha)	Soluble solids (%)	% citric acid	рН	Reducing sugars (%)	Dry Wt (%)
0	4.5 b	0.23 c	4.49 a	3.62 a	5.31c
93	4.7 a	0.26 d	4.48 a	3.63 a	5.30 c
186	4.7 a	0.29 c	4.49 a	3.67 a	5.37 b
372	4.7 a	0.31 b	4.46 a	1.70 a	5.43 a
744	4.7 a	0.33 a	4.45 a	3.65 a	5.43 a
		NS	NS	NS	**

Event: 7th IPI-FAI Round Table in collaboration with IPNI Date and venue: 20/3/2012; NAAS Committee Room No.1, NASC Complex, New Delhi Theme: Refinement of K recommendations in Vertisols

